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Abstract

We consider the problem of zeroth-order optimization (ZOO), where our goal is to minimize an un-
known function f : X → R given noisy zeroth-order access to f ; that is, f is accessible only through
noisy point evaluations. ZOO has a wide variety of applications in computer science, machine learning,
and various engineering disciplines. For example, in machine learning, ZOO techniques are often used for
hyperparameter tuning, where we need to tune several knobs of a statistical model and identify the con-
figuration of hyperparameters which leads to the best model. Owing to its importance, ZOO has received
a lot of attention from various research communities and, over the years, numerous techniques have been
proposed for this problem. However, existing ZOO techniques have one or more of the following draw-
backs: (a) they make restrictive structural assumptions on f , such as linearity or convexity, which rarely
hold in practice, (b) they are computationally expensive and do not scale well to high-dimensional prob-
lems, and (c) they make too many queries to the zeroth-order oracle, which is prohibitive in applications
such as hyperparameter tuning, where each function evaluation is expensive. Designing computationally
efficient ZOO techniques that scale well to high-dimensional problems and work for general non-convex
functions is very much an open problem.

In this work, we aim to make progress on this problem by designing efficient ZOO techniques for the
setting where f is parameterized by a neural network. There are two main reasons for working with
neural networks: (a) they are non-parametric function classes which can approximate any function to
arbitrary precision. Moreover, they seem to be able to approximate functions occurring in many real
world applications very well, and (b) we have good frameworks such as PyTorch and Tensorflow that we
can utilize to efficiently implement our neural network-based ZOO techniques.

1 Problem

Consider the problem of minimizing a (potentially non-convex) function f over a (potentially non-convex)
set X ⊆ Rd

f∗ = min
x∈X

f(x).

Suppose that we only have access to the function via a noisy zeroth-order/black-box oracle, which outputs
a noisy estimate of the function when queried at any x ∈ X

y = f(x) + ξ,

where ξ is a mean-zero random variable. The goal in zeroth order optimization (ZOO) is to find an approx-
imate minimizer of f while making as few queries to the oracle as possible. Any ZOO algorithm makes a
sequence of queries x1, x2, . . . , xT , and outputs some point x̂T as a minimizer of f .

Such ZOO problems naturally arise in a number of fields. For example, in machine learning, ZOO techniques
are often used for hyperparameter tuning, where we need to tune several knobs of a statistical model and iden-
tify the configuration of hyperparameters which leads to the best model [Snoek et al., 2012]. ZOO problems
also arise in robust machine learning, where an adversary tries to make imperceptible changes/perturbations
to the inputs of a neural network (NN) with the goal of making the network misclassify its inputs [Bhagoji
et al., 2018, Liu et al., 2020]. Defending against such adversarial attacks often requires ZOO techniques
which can efficiently identify the worst possible perturbation for any given input. These worst perturbations
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are subsequently used to train a robust NN. Another application of ZOO is in engineering design where these
techniques help expedite the search for promising designs [Forrester et al., 2008].

2 Research Plan

2.1 Background Reading

Over the years, numerous techniques have been proposed for zeroth-order optimization. Below, we present
some of the works that are relevant to this project and those that we intend to read. These works can be
broadly classified into three categories. One category makes structural assumptions on the loss function f
and while the other does not. The final category, which falls in between these two categories, assumes that
f can be parameterized as a neural network.

1. Structural Assumptions. Works which assume f is a linear function of x: [Filippi et al., 2010,
Kveton et al., 2020]. Works which assume f is a convex function of x: [Agarwal et al., 2011, Belloni
et al., 2015]. Works which assume f is strongly convex: [Shamir, 2013]. Works which assume f is
convex and smooth: [Bach and Perchet, 2016, Balasubramanian and Ghadimi, 2021].

2. No Structural Assumptions. Works that fall in this category do not make any assumptions (or
make minimal assumptions such as continuity) on f . Some of these include: [Srinivas et al., 2012,
Kleinberg et al., 2008, Bubeck et al., 2009].

3. Neural Bandit Algorithms. A recent line of work assumes that f is a neural network [Riquelme
et al., 2018, Zhou et al., 2020, Zhang et al., 2020]. While this might look like a structural assumption,
it actually is not because neural networks have the power to arbitrarily approximate any continuous
function.

We believe reading these papers can help us develop a deeper understanding of the challenges involved in
ZOO and help us develop new ZOO techniques for neural networks.

2.2 Intended Contributions

Existing ZOO techniques have one or more of the following downsides: (1) they make restrictive structural
assumptions about the objective function f such as linearity or convexity, which often don’t hold in practice,
(2) they are computational expensive and do not scale well to high-dimensional problems, and (2) they make
too many queries to the zeroth-order oracle, which can be prohibitive in applications where each function
evaluation is expensive.

Therefore, we hope to further the discussion in this space by designing efficient ZOO techniques for the
case where f is parametrized by NNs. Concretely, our aim is to arrive at ZOO techniques which (1) make no
assumptions about the underlying objective function f , (2) require fewer queries to the zeroth-order oracle
(at least by a constant factor), and (3) scale to high-dimensional problems and spare little computation time
between queries.

2.3 Expected Results

The performance of any ZOO technique is typically measured using one of the following optimality criteria

f(x̂T )− f∗ (Simple Regret)

1

T

T∑
t=1

(f(xt)− f∗) (Cumulative Regret).

Our goal is to develop practical ZOO techniques for neural networks which achieve O(poly(d)T−1/2) simple
or cumulative regret after T calls to the zeroth-order oracle.
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2.4 Timeline

Time Event(s)
September 1 - 30 Perform background reading.

October 1 - 31
Propose potential algorithms.
Setup code-base for running experiments.

November 1 - 30
Experiment with proposed algorithms and understand their drawbacks (and iterate).
If there are no drawbacks, show that proposed algorithms provably work
(i.e. derive regret bounds and/or rates of convergence).

December 1 - 14 Prepare for mid-thesis check-in presentation.

January 1 - February 20
By now, we should hopefully have a candidate algorithm which is computationally
efficient and outputs a good minimizer. The main focus now will be to theoretically
understand the algorithm. In parallel, perform thorough empirical evaluation.

February 21 Start writing thesis.

February 21 - April 21
Finish the theoretical parts and aim to submit the work to ML conferences
such as NeurIPS.

April 21 - May 12
Prepare for Meeting of the Minds poster presentation.
Prepare for final thesis presentation.

3 Research Advisors

My research advisor for this thesis project will be Professor Pradeep Ravikumar, an associate professor who
also leads the Foundations of Statistical Machine Learning group in the Machine Learning Department.

I will also be working closely with Arun Sai Suggala, one of Prof. Pradeep’s former PhD students who
is now a research scientist at Google.
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